วันพฤหัสบดีที่ 22 ตุลาคม พ.ศ. 2563

2.4 ตารางธาตุเเละสมบัติธาตุหมู่หลัก

         2.4.1 วิวัฒนาการของการสร้างตารางธาตุ        

         ตารางธาตุ หมายถึง ตารางที่นักวิทยาศาสตร์สร้างขึ้นมา เพื่อแบ่งธาตุที่มีสมบัติเหมือนกันออกเป็นหมวดหมู่  เพื่อให้ง่ายแก่การศึกษา  โดยแบ่งธาตุทั้งหมดออกเป็นหมู่และคาบ       
         - ธาตุที่อยู่ในแนวดิ่งเดียวกัน เรียกว่า อยู่ใน หมู่ เดียวกัน
       
         - ธาตุที่อยู่ในแนวนอนเดียวกัน เรียกว่า อยู่ใน คาบ เดียวกัน
     
         ในระหว่างปี พ.ศ. 2346  ถึง 2456  มีธาตุต่าง ๆที่พบในธรรมชาติประมาณ  63  ธาตุ  ซึ่งนักวิทยาศาสตร์ได้พยายามจัดธาตุเหล่านี้ให้เป็นหมวดหมู่หรือเป็นตารางธาตุโดยในช่วงแรก ๆ นั้นแบ่งธาตุออกเป็นหมวดหมู่โดยอาศัยสมบัติของธาตุ   ทั้งนี้ได้จากการสังเกตพบความคล้ายคลึงกันของสมบัติของธาตุเป็นกลุ่ม ๆ  ทำให้นำมาจัดเป็นตารางธาตุได้  เช่นแบ่งกลุ่มโดยอาศัยสมบัติเกี่ยวกับโลหะ-อโลหะ  โดยอาศัยสมบัติของความเป็นกรด-เบสของธาตุ เป็นต้น  ต่อมาเมื่อหามวลอะตอมของธาตุได้  จึงใช้มวลอะตอมมาประกอบในการจัดตารางธาตุ  จนในปัจจุบันจัดตารางธาตุโดยอาศัยการจัดเรียงอิเล็กตรอน
     
          
1. ตารางธาตุของเดอเบอไรเนอร์                     
              การจัดตารางธาตุนั้นเริ่มขึ้นตั้งแต่ปี พ.ศ.  2360 (ค.ศ. 1817) โดย โยฮันน์  เดอเบอไรเนอร์ (Johaun  Dobereiner)  นักเคมีชาวเยอรมัน  ได้นำธาตุต่าง ๆ ที่พบในขณะนั้นมาจัดเรียงเป็นตารางธาตุ โดยนำธาตุต่าง ๆ ที่มีสมบัติคล้ายคลึงกันมาจัดไว้ในหมู่เดียวกัน  หมู่ละ  3  ธาตุ  เรียงตามมวลอะตอมจากน้อยไปมากในแต่ละหมู่  มวลอะตอมของธาตุที่อยู่กลางจะเป็นค่าเฉลี่ยของมวลอะตอมของธาตุที่เหลืออีก  2  อะตอม เรียกว่า กฎชุดสาม (law of  triads หรือ Dobereine’s law  of  triads)



        2. ตารางธาตุของนิวแลนด์
            ในปี พ.ศ. 2407 (ค.ศ. 1864) จอห์น  นิวแลนด์  (John  Newlands)  นักเคมีชาวอังกฤษได้พบว่าเมื่อนำธาตุต่าง ๆ มาเรียงลำดับตามมวลอะตอมจากน้อยไปหามาก ให้เป็นแถวตามแนวนอน สมบัติของธาตุจะมีลักษณะคล้ายกันเป็นช่วง ๆ ซึ่งลักษณะดังกล่าวเกิดขึ้นทุก ๆ ของธาตุที่  8 เช่น  ถ้าเริ่มต้นจากธาตุ  Li  แล้วเรียงลำดับมวลอะตอมไปถึงธาตุที่  8 จะตรงกับ  Na  ซึ่ง  Li  และ Na  มีสมบัติต่าง ๆ คล้ายคลึงกัน
        3. ตารางธาตุของเมนเดเลเอฟ                   
            ในระหว่างปี พ.ศ. 2412 - 2413 (ค.ศ. 1269 - 1270)  ยูลิอุส  ไมเออร์ (Julius  Meyer)  นัฟวิทยาศาสตร์ชาวเยอรมัน และดิมิทรี  เมนเดเลเอฟ (Dimitri  Mendelejev)  นักวิทยาศาสตร์ชาวรัสเซียได้พบในเวลาใกล้เคียงกันว่าสมบัติต่าง ๆ ของธาตุมีส่วนสัมพันธ์กับมวลอะตอมของธาตุกล่าวคือ  “ถ้าเรียงลำดับธาตุตามมวลอะตอมจากน้อยไปหามาก  จะพบว่าธาตุ ๆ  ต่าง จะมีสมบัติคล้ายคลึงกันเป็นช่วง ๆ ”   ซึ่งเมเดเลเอฟได้ตั้งเป็นกฎเรียกว่า  “กฎพิริออดิก”  หรือกฎตารางธาตุ  (Periodic  law)  และพิมพ์เผยแพร่ในปี พ.ศ. 2412  ก่อนที่ไมเออร์จะพิมพ์เผยแพร่ครั้งหนึ่ง  ดังนั้นเพื่อเป็นเกียรติแก่เมนเดเลเอฟ  จึงเรียกตารางนี้ว่า “ตารางพีริออดิกของเมนเดเลเอฟ”  หรือตารางธาตุของเมนเดเลเอฟ (Mendelejev’ s  periodic  table)
            เกณฑ์ที่สำคัญที่เมนเดเลเอฟใช้ คือ จัดธาตุที่มีสมบัติคล้ายคลึงกันที่ปรากฏซ้ำกันเป็นช่วง ๆ ให้อยู่ในหมู่หรือในแนวตั้งเดียวกัน  และพยายามเรียงลำดับมวลอะตอมจากน้อยไปหามาก  ในกรณีที่เรียงตามมวลอะตอมแล้วสมบัติของธาตุไม่สอดคล้องกัน  ก็พยายามจัดให้เข้าหมู่โดยปล่อยให้ช่องว่างเว้นไว้ในตารางซึ่งเมนเดเลเอฟคิดว่า  ช่องว่างเหล่านั้นน่าจะเป็นตำแหน่งของธาตุซึ่งยังไม่มีการค้นพบในขณะนั้น  ในการจัดตารางธาตุนอกจากจะใช้มวลอะตอมแล้ว ยังใช้สมบัติทางเคมีและทางกายภาพของสารประกอบอื่น ๆ นอกเหนือจากสารประกอบคลอไรด์ และออกไซด์มาประกอบการพิจารณาด้วย

        ช่องว่างที่เว้นไว้คือตำแหน่งของธาตุที่ยังไม่พบในสมัยนั้น  เนื่องจากตำแหน่งของธาตุในตารางธาตุสัมพันธ์กับสมบัติของธาตุ  ทำให้เมนเดเลเอฟสามารถทำนายสมบัติของธาตุไว้ล่วงหน้าได้ด้วย โดยการศึกษาสมบัติเกี่ยวกับจุดหลอมเหลว  จุดเดือด  ความถ่วงจำเพาะ  และความร้อนจำเพาะ รวมทั้งสมบัติเกี่ยวกับสารประกอบคลอไรด์ และออกไซด์
        4. ตารางธาตุของเฮนรี โมสลีย์                   
            เฮนรี  โมสลีย์  (Henry  Moseley)  นักวิทยาศาสตร์ชาวอังกฤษ  ได้แก้ไขตารางธาตุของเมนเดเลเอฟให้ถูกต้องขึ้น  โดยการพบว่าเลขอะตอม หรือจำนวนโปรตอนในนิวเคลียสของธาตุ  มีความสัมพันธ์กับสมบัติของธาตุมากกว่ามวลอะตอม  ทำให้สอดคล้องกับกฎพีริออดิกมากกว่า  สามารถสร้างตารางธาตุได้โดยไม่ต้องสลับที่ธาตุบางธาตุเหมือนกรณีการจัดเรียงตามมวลอะตอม
           ประมาณปี พ.ศ. 2456 (ค.ศ. 1913)  โมสลีย์จึงเสนอตารางธาตุใหม่โดยเรียงตามเลขอะตอมจากน้อยไปหามาก  และจัดธาตุที่มีสมบัติคล้ายคลึงกันให้อยู่ในหมู่เดียวกัน  และกำหนดกฎตารางธาตุขึ้นใหม่เป็น “สมบัติต่าง ๆ ของธาตุในตารางธาตุขึ้นอยู่กับเลขอะตอมของธาตุ”
        2.4.2 กลุ่มของธาตุในตารางธาตุ            
                  ตารางธาตุแบ่งธาตุในแนวตั้งออกเป็น  18  แถวหรือ  18  หมู่  โดยธาตุทั้งหมด  18  แถว  แบ่งเป็น  2  กลุ่มใหญ่ ๆ  คือกลุ่ม  A  และ  B  กลุ่ม  A  มี  8  หมู่ คือหมู่  IA   ถึง  VIIIA  ส่วนกลุ่ม  B  ซึ่งอยู่ระหว่างหมู่  IIA   และ  IIIA  มี  8  หมู่เช่นเดียวกัน คือ หมู่  IB  ถึง   VIIIB   (แต่มี  10  แนวตั้ง)  เรียกธาตุกลุ่ม  B  ว่า  ธาตุทรานซิชัน(Transition Elements)
ธาตุในแต่ละหมู่  ของกลุ่ม  A  ถ้ามีสมบัติคล้ายกันจะมีชื่อเรียกเฉพาะหมู่ เช่น
*      ธาตุหมู่  IA  เรียกว่า  โลหะอัลคาไล (alkali  metal)  ได้แก่  Li  ,  Na  ,  K , Rb , Cs , Fr
*      ธาตุหมู่ IIA เรียกว่า โลหะอัลคาไลน์เอิร์ท(alkaline  earth)ได้แก่ Be  Mg  Ca  Sr  Ba  Ra
*      ธาตุหมู่ VIIA เรียกว่า ธาตุเฮโลเจน (halogen)  ได้แก่   F  Cl  Br  I  At
*      ธาตุหมู่ที่ VIIIA  เรียกว่า ก๊าซเฉื่อย (Inert  gas)  ได้แก่   He  Ne  Ar  Kr  Xe  Rn
สำหรับการแบ่งธาตุเป็นคาบ  ธาตุทั้งหมดในตารางธาตุแบ่งเป็น  7  คาบ  ซึ่งในแต่ละคาบอาจจะมีจำนวนธาตุไม่เท่ากัน  เช่น
สำหรับคาบต่าง ๆ ในตารางธาตุแบ่งเป็น  7  คาบดังนี้
*      คาบที่ 1  มี  2  ธาตุ คือ H ,  He
*      คาบที่ 2  มี  8  ธาตุ  คือ  ตั้งแต่    Li   ถึง   Ne
*      คาบที่ 3  มี  8  ธาตุ  คือ  ตั้งแต่    Na   ถึง   Ar
*      คาบที่ 4  มี  18  ธาตุ  คือ  ตั้งแต่    K   ถึง   Kr
*      คาบที่ 5  มี  18  ธาตุ  คือ  ตั้งแต่    Rb   ถึง   Xe
*      คาบที่ 6  มี  32  ธาตุ  คือ  ตั้งแต่    Cs   ถึง   Rn
*      คาบที่ 7  มี  19  ธาตุ  คือ  ตั้งแต่    Fr   ถึง   Ha
รวมทั้งหมด  105  ธาตุ  เป็นก๊าซ  11  ธาตุ  คือ  H  ,  N  ,  O  , F ,  Cl ,  He ,  Ne ,  Ar ,
Kr  ,  Xe   และ  Rn  เป็นของเหลว   5  ธาตุ  คือ   Cs  ,  Fr , Hg  ,  Ga  และ  Br  ที่เหลือเป็นของแข็ง
สำหรับ  2  แถวล่างเลขอะตอม    57 - 70  และ  89 - 102  เป็นธาตุกลุ่มย่อยที่แยกมาจากหมู่  IIIB  ในคาบที่  6  และ  7  เรียกธาตุในกลุ่มย่อยนี้รวม ๆ ว่า กลุ่มธาตุเลนทาไนด์ และ กลุ่มธาตุแอกทิไนด์
นอกจากนี้เมื่อพิจารณาธาตุหมู่  IIIA  ไปทางขวามือ  จะพบเส้นหนักหรือเส้นทึบเป็นแบบขั้นบันได  เส้นหนักนี้จะเป็นเส้นแบ่งกลุ่มธาตุโลหะและอโลหะ  กล่าวคือ ธาตุทางขวาของเส้นขั้นบันไดจะเป็นอโลหะ  ธาตุทางซ้ายมือของเส้นขั้นบันไดจะเป็นโลหะ  ธาตุที่อยู่ชิดกับเส้นขั้นบันได เป็นธาตุกึ่งโลหะ ซึ่งมีทั้งสมบัติของโลหะและอโลหะ  เช่น  ธาตุ  B , Si ,Ge ,As , Sb , Te
การตั้งชื่อธาตุที่ค้นพบใหม่
จากตารางธาตุในรูปที่  1.23  จะพบว่ามีธาตุอยู่  118  ธาตุ  ซึ่งยังมีการค้นพบธาตุใหม่ ๆ  เพิ่มขึ้นอีกหลายธาตุ  แต่ยังไม่ได้กำหนดสัญลักษณ์ที่แน่นอนไว้ในตารางธาตุ  ธาตุบางธาตุถูกค้นพบโดยนักวิทยาศาสตร์หลายคณะ  ทำให้มีชื่อเรียกและสัญลักษณ์ต่างกัน
เช่น  ธาตุที่  104  ค้นพบโดยคณะนักวิทยาศาสตร์  2  คณะ  คือ คณะของนักวิทยาศาสตร์สหรัฐอเมริกา ซึ่งเรียกชื่อว่า  รัทเทอร์ฟอร์เดียม (Ratherfordium)  และใช้สัญลักษณ์  Rf  ในขณะที่คณะนักวิทยาศาสตร์สหภาพโซเวียตเรียกชื่อว่าเคอร์ซาโตเวียม(Kurchatovium) ใช้สัญลักษณ์  Ku
ธาตุที่  105 ค้นพบโดยคณะนักวิทยาศาสตร์   2  คณะเช่นเดียวกัน คือคณะนักวิทยาศาสตร์สหรัฐอเมริกาเรียกชื่อว่า  ฮาห์เนียม (Hahnium)  และใช้สัญลักษณ์  Ha  ในขณะที่นักวิทยาศาสตร์สหภาพโซเวียตใช้ชื่อว่า  นิลส์บอห์เรียม (Neilbohrium)  และใช้สัญลักษณ์เป็น  Ns
การที่คณะนักวิทยาศาสตร์ต่างคณะตั้งชื่อแตกต่างกัน ทำให้เกิดความสับสน  International  Union  of  Pure  and  Applied  Chemistry  (IUPAC)  จึงได้กำหนดระบบการตั้งชื่อขึ้นใหม่  โดยใช้กับชื่อธาตุที่มีเลขอะตอมเกิน  100  ขึ้นไป  ทั้งนี้ให้ตั้งชื่อธาตุโดยระบุเลขอะตอมเป็นภาษาละติน  แล้วลงท้ายด้วย   ium  ระบบการนับเลขในภาษาละตินเป็นดังนี้
0   =   nil  (นิล)           1   =   un     (อุน)
2   =   bi   (ไบ)           3   =   tri     (ไตร)
4   =   quad  (ควอด)       5   =  pent   (เพนท์)
6   =   hex  (เฮกซ์)         7   =   sept  (เซปท์)
8   =   oct (ออกตฺ)         9   =  enn  (เอนน์)
เช่น  - ธาตุที่  104  ตามระบบ  IUPAC   อ่านว่า  อุนนิลควอเดียม (Unnilquadium)  สัญลักษณ์  Unq
- ธาตุที่  105  ตามระบบ  IUPAC   อ่านว่า  อุนนิลเพนเทียม (Unnilpentium)   สัญลักษณ์  Unp
การจัดตารางธาตุเป็นหมู่เป็นคาบ ทำให้ศึกษาสมบัติต่าง ๆ ของธาตุได้ง่ายขึ้น สามารถทำนายสมบัติบางประการของธาตุบางธาตุได้  กล่าวคือธาตุที่อยู่ในหมู่เดียวกันจะมีสมบัติต่าง ๆ  คล้าย ๆ กัน และธาตุที่อยู่ในคาบเดียวกัน  จะมีแนวโน้มของการเปลี่ยนแปลงสมบัติต่าง ๆ  ต่อเนื่องกันไป  ซึ่งจะกล่าวถึงรายละเอียดต่อไป

        2.4.3 ขนาดอะตอม
                ขนาดอะตอมหาได้จากเทคนิคทาง x-ray diffraction และ microwave spectroscopy ถ้าอะตอมเรียงตัวอย่างมีระเบียบแบบชิดกันมากที่สุด ขนาดของอะตอมจะหาได้จากความสัมพันธ์ ดังนี้
ขนาดของ  1  อะตอม   = 
                   จากแบบจำลองอะตอมแบบกลุ่มหมอก อะตอมมีขอบเขตที่ไม่แน่นอน ระยะระหว่างนิวเคลียสถึงผิวอะตอมมีค่าไม่คงที่ ทำให้หาขนาดของอะตอมที่แท้จริงไม่ได้ จากแบบจำลองของอะตอมตามทฤษฎีของโบร์ อิเล็กตรอนในไฮโดรเจนอะตอมอาจมีพลังงานได้หลายค่า ขนาดอะตอมของไฮโดรเจนจึงขึ้นอยู่กับว่าอิเล็กตรอนอยู่ในระดับพลังงานใด ถ้าอยู่ในระดับพลังงานสูง จะอยู่ห่างจากนิวเคลียสมาก ขนาดอะตอมจะใหญ่ และถ้าอยู่ในระดับพลังงานต่ำ จะอยู่ใกล้นิวเคลียส ขนาดอะตอมจะเล็ก ดังนั้นจึงทำให้หาขนาดของอะตอมที่แท้จริงไม่ได้
        2.4.4 ขนาดไอออน
                
อะตอมซึ่งมีจำนวนโปรตอนเท่ากับอิเล็กตรอน เมื่อรับอิเล็กตรอนเพิ่มเข้ามาหรือเสียอิเล็กตรอนออกไปอะตอมจะกลายเป็นไอออน นักเรียนคิดว่าขนาดของไอออนกับขนาดอะตอมของธาตุเดียวกันจะแตกต่างกันหรือไม่การบอกขนาดของไอออนทำได้เช่นเดียวกับการบอกขนาดอะตอม กล่าวคือจะบอกเป็นค่ารัศมีไอออน ซึ่งพิจารณาจากระยะระหว่างนิวเคลียสของไอออนคู่หนึ่งๆ ที่มีแรงยึดเหนี่ยวซึ่งกันและกันในโครงผนึก ตัวอย่างรัศมีไอออนของ \displaystyle Mg^{2 + } และ \displaystyle O^{2 - } ในสารประกอบ  MgO  แสดงดังรูป

- ขนาดของ Mg กับ  และ O กับ  แตกต่างกันอย่างไร เพราะเหตุใด
เมื่อโลหะทำปฏิกิริยากับอโลหะ อะตอมของโลหะจะเสียเวเลนซ์อิเล็กตรอนกลายเป็นไอออนบวก จำนวนอิเล็กตรอนในอะตอมจึงลดลง ทำให้แรงผลักระหว่างอิเล็กตรอนลดลงด้วย หรือกล่าวอีกนัยหนึ่งได้ว่าแรงดึงดูดระหว่างประจุในนิวเคลียสกับอิเล็กตรอนจะเพิ่มมากขึ้นไอออนบวกจึงมีขนาดเล็กกว่าอะตอมเดิม ส่วนอะตอมของอโลหะนั้นส่วนใหญ่จะรับอิเล็กตรอนเพิ่มเข้ามาและเกิดเป็นไอออนลบ เนื่องจากมีการเพิ่มขึ้นของจำนวนอิเล็กตรอนจึงทำให้แรงผลักระหว่างอิเล็กตรอนที่เคลื่อนที่อยู่รอบนิวเคลียสมีค่าสูงขึ้น ขอบเขตของกลุ่มหมอกอิเล็กตรอนจะขยายออกไปจากเดิม ไอออนลบจึงมีมีขนาดใหญ่กว่าอะตอมเดิม ตัวอย่างขนาดอะตอมกับขนาดไอออนของธาตุแสดงดังรูป
รัศมีอะตอมและรัศมีไอออน (พิโกเมตร) ของธาตุบางชนิด
-  ขนาดไอออนตามหมู่มีแนวโน้มอย่างไร
-  \displaystyle Na^ + กับ \displaystyle F^ - มีการจัดอิเล็กตรอนและขนาดไอออนแตกต่างกันหรือไม่ อย่างไร
-  \displaystyle Na^ + \displaystyle Mg^{2 + } และ \displaystyle Al^{3 + } มีขนาดไอออนแตกต่างกันอย่างไร
จากรูป  เมื่อพิจารณาแนวโน้มของรัศมีอะตอมและรัศมีไอออนตามหมู่ จะพบว่าหมู่ IA   IIA    IIIA และ VIIA   มีแนวโน้มเช่นเดียวกันคืออะตอมและไอออนมีขนาดเพิ่มขึ้นจากบนลงล่าง รัศมีไอออนบวกจะมีค่าน้อยกว่ารัศมีอะตอมแต่รัศมีไอออนลบจะมีค่ามากกว่ารัศมีอะตอมการเปรียบเทียบขนาดไอออนที่มีความหมาย จะเปรียบเทียบระหว่างไอออนที่มีการจัดอิเล็กตรอนเหมือนกันหรือมีจำนวนอิเล็กตรอนเท่ากัน เช่น  \displaystyle Na^ + กับ  \displaystyle F^ - ซึ่งมี 10 อิเล็กตรอนเท่ากันและจัดอิเล็กตรอนเป็น  พบว่า   \displaystyle Na^ + มีขนาดไอออนเล็กกว่า  \displaystyle F^ - ทั้งนี้เพราะ  \displaystyle Na^ + มีประจุในนิวเคลียสมากกว่า  \displaystyle F^ - ส่วนไอออนบวกที่จัดอิเล็กตรอนเหมือนกัน ไอออนบวกที่มีประจุมากจะมีขนาดเล็กกว่าไอออนบวกที่มีประจุน้อย นั่นคือไอออน 3+ จะมีขนาดเล็กกว่า 2+ และ 1+ ตามลำดับ
        2.4.5 พลังงานไอออไนเซซัน
                   พลังงานไอออไนเซชัน (ionization energy : IE)  หมายถึงพลังงานที่น้อยที่สุดที่ใช้เพื่อทำให้อิเล็กตรอนหลุดออกจากอะตอมในสถานะแก๊สกลายเป็นไอออนในสถานะแก๊ส  เช่น  การทำให้โฮโดรเจนอะตอมกลายเป็นไฮโดรเจนไอออนในสถานะแก๊ส  เขียนแสดงได้ดังนี้
H(g)    -------------->   H+(g)   +   e– IE  =  1318 kJ/mol
ไฮโดรเจนมีเพียง  1  อิเล็กตรอน  จึงมีค่าพลังงานไอออไนเซชันเพียงค่าเดียว  ถ้าเป็นธาตุที่มีหลายอิเล็กตรอนก็จะมรพลังงานไอออไนเซชันหลายค่า  พลังงานน้อยที่สุดที่ทำให้อิเล็กตรอนตัวแรกหลุดออกตากอะตอมในสถานะแก๊สเรียกว่า “พลังงานไอออไนเซชันลำดับที่ 1”  เขียนย่อเป็น IE1พลังงานที่ทำให้อิเล็กตรอนตัวต่อ ๆ ไปหลุดออกจากอะตอมในสถานะแก๊สก็จะเรียกว่า  พลังงานไอออไนเซชันลำดับที่  2 , 3 , . . .  ตามลำดับ  และเขียนย่อเป็น  IE2 , IE3 , . . .  ตามลำดับ  เช่น  ธาตุโบรอนมี  5  อิเล็กตรอน  ก็จะมีพลังงานไอออไนเซชัน  5  ค่า  ดังนี้
B(g)    --------->          B+(g)   +   e–               IE1 =  807 kJ/mol
B+(g)     -------->         B2+(g)   +   e–            IE2 =  2433 kJ/mol
B2+ (g)  -------->        B3+ (g)   +   e–           IE3 =  3666 kJ/mol
B3+ (g)     ----------->   B4+ (g)   +   e–           IE4 =  25033 kJ/mol
B4+ (g)   --------->        B5+ (g)   +   e–           IE5 =  32834 kJ/mol
พลังงานไอออไนเซชันกับจำนวนอิเล็กตรอนในระดับพลังงาน
ค่าพลังงานไอออไนเซชันของธาตุต่าง ๆ ในตารางธาตุใช้เป็นข้อมูลในการจัดกลุ่มอิเล็กตรอนที่อยู่รอบนิวเคลียส  ซึ่งพบความสัมพันธ์คือ  อิเล็กตรอนที่อยู่ในระดับพลังงานเดียวกัน (ชั้นเดียวกัน)  จะมีค่าพลังงานไอออไนเซชันใกล้เคียงกัน  และอิเล็กตรอนที่อยู่ต่างระดับพลังงานกัน  จะมีค่าพลังงานไอออไนเซชันแตกต่างกันมาก  ซึ่งสรุปความสัมพันธ์ถึงจำนวนอิเล็กตรอนในแต่ละระดับพลังงานจะมีจำนวนไม่เกิน 2n2
สรุปแนวโน้มพลังงานไอออไนเซชัน
1.  แนวโน้มค่าพลังงานไอออไนเซชันลำดับที่ 1 ( IE1) ตามคาบ  พบว่ามีแนวโน้มเพิ่มขึ้นตามเลขอะตอม  เนื่องจากธาตุในคาบเดียวกันมีจำนวนโปรตอนในนิวเคลียสเพิ่มขึ้นและมีขนาดอะตอมเล็กลง  แรงดึงดูดระหว่างนิวเคลียสกับเวเลนซ์อิเล็กตรอนจึงเพิ่มมากขึ้น  อิเล็กตรอนจึงหลุดออกจากอะตอมได้ยาก
2.  แนวโน้มค่าพลังงานไอออไนเซชันลำดับที่ 1 ( IE1) ตามหมู่  ปัจจัยทีมีผลคือคือขนาดอะตอมซึ่งเป็นผลมาจากระดับพลังงาน  ค่า IE1จะลดลงเมื่ออะตอมมีขนาดใหญ่ขึ้น  เพราะขนาดอะตอมที่ใหญ่ขึ้นจะมีเวเลนซ์อิเล็กตรอนที่ห่างนิวเคลียสมากขึ้น  อิเล็กตรอนจะได้รับแรงดึงดูดจากนิวเคลียสน้อย  อิเล็กตรอนจะหลุดออกจากอะตอมได้ง่าย
        2.4.6 สัมพรรคภาคอิเล็กตรอน 
                  สัมพรรคภาพอิเล็กตรอน (electron affinity)  คือ พลังงานที่อะตอมในสถานะแก๊สคายออกมาเมื่อได้รับอิเล็กตรอน
F(g) + e-  F-(g) + 328 kJ/mol
สรุปแนวโน้มสัมพรรคภาพอิเล็กตรอน
1.  เมื่อพิจารณาตามคาบ  ค่า EA  ในหมู่ IA   IIA  และ IIIA  มีค่าเป็นลบน้อยกว่าธาตุที่อยู่ทางขวามือ  แสดงว่าธาตุในหมู่ดังกล่าวมีแนวโน้มที่จะรับอิเล็กตรอนได้น้อยมาก  โดยเฉพาะธาตุในหมู่ IIA  มีค่า EA  สูงที่สุด  แสดงว่ารับอิเล็กตรอนยากที่สุด
2.  ธาตุหมู่ IVA   VA   VIA  และ VIIA  มีแนวโน้มสูงที่จะรับอิเล็กตรอน  โดยเฉพาะธาตุหมู่ VIIA  ชอบที่จะรับอิเล็กตรอนสูงที่สุด  การรับอิเล็กตรอนของธาตุในหมู่ VIIA  จะทำให้อะตอมมีการจัดเรียงอิเล็กตรอนเหมือนแก๊สเฉื่อยซึ่งมีความเสถียรมาก EA  ของแก๊สเฉื่อยจึงมีค่าเป็นบวก
        2.4.7 อิเล็กโทรเนกาติวิตี 
                    อิเล็กโทรเนกาติวิตี (electronegativity : EN)  หมายถึงค่าที่แสดงความสามารถในการดึงดูดอิเล็กตรอนของอะตอมคู่ที่เกิดพันธะที่จะรวมกันเป็นโมเลกุล  ธาตุที่มีค่าอิเล็กโทรเนกาติวิตีสูงจะมีความสามารถในการดึงดูดหรือรับอิเล็กตรอนได้ดี  ได้แก่พวกอโลหะ  ส่วนธาตุที่มีค่าอิเล็กโทรเนกาติวิตีต่ำจะดึงดูดหรือรับอิเล็กตรอนได้ไม่ดี  ได้แก่พวกโลหะ  เช่น  โมเลกุลของ  HCl  เนื่องจาก  Cl  ดึงดูดอิเล็กตรอนได้ดีกว่า H  ดังนั้น  Cl  จึงมีค่าอิเล็กโทรเนกาติวิตีสูงกว่า H  
สรุปแนวโน้มค่าอิเล็กโทรเนกาติวิตี
1.  แนวโน้มค่าอิเล็กโทรเนกาติวิตีตามคาบ
ปัจจัยที่มีผลคือเลขอะตอมหรือประจุบวกในนิวเคลียส  ธาตุที่มีประจุบวกในนิวเคลียสมากจะมีค่า EN สูง  ดังนั้นธาตุที่อยู่ในคาบเดียวกันจะมีค่า EN ดังนั้นธาตุที่อยู่ในคาบเดียวกันจะมีค่า EN เพิ่มขึ้นจากซ้ายไปขวา  เพราะประจุบวกที่นิวเคลียสจะส่งแรงดึงดูดกระทำต่ออิเล็กตรอนได้มาก
2.  แนวโน้มค่าอิเล็กโทรเนกาติวิตีตามหมู่
ปัจจัยที่มีผลคือขนาดอะตอมซึ่งเป็นผลมาจากจำนวนระดับพลังงาน  ธาตุที่มีจำนวนระดับพลังงานน้อย  หรือขนาดอะตอมเล็ก  จะมีค่า EN สูงกว่าธาตุที่มีขนาดอะตอมใหญ่ในหมู่เดียวกัน  เพราะอะตอมที่มีขนาดใหญ่นิวเคลียสจะส่งแรงดึงดูดออกไปที่เวเลนซ์อิเล็กตรอนได้น้อย  ดังนั้น  “ธาตุที่อยู่ในหมู่เดียวกันจะมีค่า EN ลดลงจากบนลงล่าง” 

ไม่มีความคิดเห็น:

แสดงความคิดเห็น

แบบทดสอบบทที่3

1. สารละลายที่เกิดจากปฏิกิริยาระหว่างธาตุ หมู่ 1 กับน้ำ มีสมบัติอย่างไร ก. เป็นกลาง ข. เป็นได้ทั้งกรดและเบส ค. เป็นกรด ง.  เป็นเบส 2. ข้อใดไ...